

Anexo II

TITULACIÓN: Grado en Ciencias Ambientales

MEMORIA INICIAL DEL TRABAJO FIN DE GRADO

CENTRO: Facultad de Ciencias Experimentales

Universidad de Jaén Facultad de Ciencias Experimentales

CURSO ACADÉMICO: 2013-14

Título del Trabajo Fin de Grado: Problemas ambientales de las arcillas expansivas

1. DATOS BÁSICOS DE LA ASIGNATURA

NOMBRE: Trabajo Fin de GradoCÓDIGO: 10416001CARÁCTER: ObligatorioCréditos ECTS: 12CURSO: CuartoCUATRIMESTRE: Segundo

2. TUTOR/COTUTOR (en su caso)

Juan Jiménez Millán/ María Isabel Abad Martínez

3. VARIANTE Y TIPO DE TRABAJO FIN DE GRADO (Artículo 8 del Reglamento de los Trabajos Fin de Grado)

Específico/Experimental

4. COMPETENCIAS (*) Y RESULTADOS DE APRENDIZAJE

Competencias transversales:

CT-2 Capacidad de organización y planificación

CT-3 Ser capaz de comunicarse correctamente de forma oral y escrita

CT-7 Ser capaz de resolver problemas

CT-14 Razonamiento crítico

CT-16 Ser capaz de aprender de forma autónoma CT-

18 Creatividad

CT-25 Ser capaz de usar internet como medio de comunicación y como fuente de información

CT-30 Capacidad de autoevaluación

Competencias Específicas:

CE-1 Conocimientos generales básicos

CE-3 Capacidad para tomar conciencia de las dimensiones temporales y espaciales de los procesos ambientales

CE-4 Capacidad para integrar las evidencias experimentales encontradas en los estudios de campo y/o laboratorio con los conocimientos teóricos

CE-5 Capacidad de interpretación cualitativa de datos

CE-6 Capacidad de interpretación cuantitativa de datos

CE-32 Ser capaz de aplicar los principios básicos de la Geología al conocimiento del Medio

CE-38 Capacidad de evaluar y prevenir riesgos naturales

CE-39 Capacidad de análisis e interpretación de datos

CE-48 Capacidad parar tomar conciencia de las dimensiones temporales y espaciales de los procesos ambientales y su sucesión a lo largo de la historia de la Tierra

^{*} Estas son las competencias mínimas. Añadir las competencias necesarias para cada Trabajo Fin de Grado propuesto

Resultados de aprendizaje	
Resultado	Capacidad de integrar creativamente sus conocimientos para resolver un
416001A	problema ambiental real.
Resultado	Capacidad para estructurar una defensa sólida de los puntos de vista
416001B	personales apoyándose en conocimientos científicos bien fundados.
Resultado	Destreza en la elaboración de informes científicos complejos, bien
416001C	estructurados y bien redactados.
Resultado	Destreza en la presentación oral de un trabajo, utilizando los medios
416001D	audiovisuales más habituales.

5. ANTECEDENTES

Las arcillas expansivas o esmectitas son silicatos que poseen la propiedad de expandirse y contraerse sin por ello perder su integridad cristalográfica. Esta propiedad es fundamental para entender las propiedades físicas de los materiales naturales que contienen esmectitas. Concretamente, la identificación de esmectitas y su caracterización es crucial para prevenir numerosos problemas en la ejecución de obras públicas. Estas fases minerales son abundantes en determinados suelos y experimentan procesos de expansión-contracción cíclicos en relación con periodos de lluvia y sequía, que favorecen procesos de deslizamiento y de desestabilización de pendientes.

6. HIPÓTESIS DE TRABAJO

Los minerales esmectíticos son especialmente abundantes en el sureste de España y en

muchos casos responsables de la desestabilización y deslizamiento de laderas. El riesgo que implica la presencia de estas arcillas, hace que resulte de gran interés su identificación, caracterización y, a ser posible, cuantificación de cara a garantizar el éxito de numerosos proyectos ingenieriles. Se plantea la identificación y caracterización de una zona de riesgo por deslizamiento debido a la presencia de arcillas expansivas.

7. BREVE DESCRIPCIÓN DE LAS ACTIVIDADES A REALIZAR

Revisión bibliográfica que incluye distintos aspectos:

- Estructura, composición y propiedades físicas de las arcillas expansivas.
- Técnicas más usuales en la caracterización de este tipo de arcillas.
- Esmectitas y deslizamientos.

Toma de muestras arcillosas en una zona de riesgo aparente.

Identificación y caracterización de las arcillas muestreadas.

Análisis de los resultados obtenidos.

Elaboración de una memoria escrita y una presentación oral.

8. DOCUMENTACIÓN/BIBLIOGRAFÍA

BÁSICA:

Grim, R.E., 1968. Clay mineralogy. International Series in the Earth and Planetary Sciences, McGraw-Hill, New York, 2nd Ed., 596 pp.

Moore, D.M., Reynolds, R.C., 1997. X-Ray Diffraction and the Identification and Analysis of Clay Minerals. Oxford University Press. 378 pp.

COMPLEMENTARIA:

Azañón, J.M., Azoe, A., Yesares, J., Tsiege, M., Mateos, R.M., Nieto, F., Delgado, J., López-Chicano, M., Martín, W., Rodríguez-Fernández, J. (2010) Regional-scale high-plasticity clay-bearing formation as controlling factor on landslides in Southeast Spain. Geomorphology, 120, 26-37.

Nieto F, Abad I, Azañón JM (2008) Smectite quantification in sediments and soils by thermogravimetric analyses. Applied Clay Sciences, 38, 288-296.

Gibo, S., Egashira, K., Ohtsubo, H., 1987. Residual strength of smectite-dominated soils from the Kamenose landslide in Japan. Canadian Geotechnical Journal 24, 456-462.

Irigaray-Fernández, C., Chacón-Montero, J., 1991. Los movimientos de ladera en el sector de Colmenar (Málaga). Revista de la Sociedad Geológica de España 4, 203-214. Irigaray-Fernández, C., Romero-Cordón, E., Chacón-Montero, J., 1991. El deslizamiento de Riogordo (Málaga). Geogaceta 10, 103-106.

Meisina, C., 2004. Swelling-shrinking properties of weathered clayey soils associated with shallow landslides. Quarterly Journal of Engineering Geology and Hydrogeology 37, 77-

94.

Yilmaz, I., Karacan, E., 2002. A landslide in clayey soils: An example from the Kizildag region of the Sivas-Erzincan Highway (Sivas-Turkey). Environmental Geosciences 9, 35-42.

9. CRONOGRAMA PROVISIONAL

Semanas 1, 2, 3 y 4 (puesta a punto, revisión bibliográfica, elaboración escrita de una síntesis bibliográfica) 80 horas

Semanas 5, 6, 7 y 8 (toma de muestras, preparación y obtención de datos) 80 horas Semanas 9, 10 y 11 (Interpretación de resultados) 60 horas

Semanas 12, 13 y 14 (Elaboración de la memoria escrita y de la presentación oral) 75 horas